Lighting the Way – Emergency Lighting Requirements

What you need to know about emergency lighting

Why is emergency lighting necessary?

As the responsible person it is your legal obligation to ensure that adequate emergency lighting is installed across all the escape routes and exits from every area of the building with a minimum backup duration of between 1 and 3 hours. Emergency lighting is essential to light escapes routes for emergency evacuations when normal mains-powered lighting fails.

Eden Bulkhead Emergency Lighting
LED Emergency Lighting Bulkhead – Eden

There are different types of emergency lights, some function as a normal light and others function only as an emergency light source. As a starting point you should know what type of emergency light you want to install for example; do you want a maintained emergency light (stays on constantly) or a non-maintained emergency light (illuminates only in the event of a mains power failure)?

Where to install emergency lights and signs

When deciding where to install emergency lights, take into account any hazards that there may be along the evacuation route, such as corners, stairways or uneven flooring. You must also ensure that fire alarm call points and equipment used for firefighting, such as extinguishers or fire blankets, are adequately illuminated to be easily seen or located. Some areas will require continued operation (e.g. a chemical processing room, operation theatre etc); higher continued lighting requirements must be considered in these areas.

Jalite photoluminescent fire exit signs
Jalite photoluminescent fire exit signs

A sub-category of emergency lighting is fire exit signs, which are green ‘running man’ signs with arrows that guide people towards the nearest exits. These are either internally lit in the same fashion as space emergency lighting or, in case sufficient other emergency lights are available, they can be photoluminescent. Such ‘glow-in-the-dark signs store energy from either natural or artificial light and releases this stored energy when the light source is no longer there, emitting a yellow/green glow to illuminate the text on the sign.

You should refer to your fire risk assessment to ensure that you have covered all the essential fire escape routes and addressed any hazards on your site that were highlighted in this assessment. It is a legal requirement to carry out a fire risk assessment and you should refresh this assessment if the activities within your premises change or if significant changes to the layout are made. You can find authoritative guidance in the government's fire risk assessment guides.

Buy emergency lights

Visit our emergency lights and signs section to view our full range of emergency lighting products.

Testing and maintenance

As with all fire safety equipment, regular testing of your emergency lights must be carried out to ensure that it is working correctly. You should test that the lights are triggered when the mains supply is cut, and also that all the lights are illuminated as they should be. This can be done with the use of a fish key.

You will need to test your lighting once a month and ensure that a full discharge test is carried once a year. Log the results as any other fire safety equipment tests in your fire safety logbook.

If you would like to know more about emergency lighting our emergency lighting guides can provide you with useful information.

Free reminder service

Sign up to our free reminder service to receive text or email reminders to regularly test your emergency lighting.

More information

Angie Dewick-Eisele

Director

Angie Dewick-Eisele is co-founder of Safelincs Ltd, one of the leading fire safety providers in the UK. Angie was Marketing Manager for many years and as Director is these days responsible for Content Management.

What are deed boxes

We all own documents that we either cannot afford to lose, such as passports, marriage certificates, insurance documents and bank documents or that we just cannot bear to lose because of their sentimental value to us, such as important personal letters. Anyone who has been unfortunate enough to lose one of these items will be well aware of the inconvenience, chaos and upset this can cause.

You would not dream of exposing your valuables to theft by leaving them unattended on a window ledge. By the same logic, surely you would not willingly leave your most important documents exposed to fire or water damage either, would you?

Having read this far, you might already have begun creating a mental shortlist of the items you would choose to protect. Now imagine losing them all – at the same time. It is a scary prospect, or at least it would be were there not such a simple and cost effective means of avoiding this potential nightmare: deed boxes.

Deed boxes are designed to take valuable documents and protect them against fire damage and water ingress. Interestingly, the name ‘deed box’ persists despite the deeds of a house, the most important deeds most of us will come across in our lives, are these days usually stored by our solicitors on our behalf.

Safelincs offers a specifically designed Fire and Waterproof Deed Box which protects documents as the ones mentioned above. Suitable for A4 documents and with an internal cubic capacity of 5.4 litres, there is even ample space to store multiple CDs, DVDs or USB devices alongside your paperwork should you wish to. This protects your digital information from fire and water damage as well.
Fire and Waterproof Deed Box

 

This deed box offers all of the standard features experts agree you should look for when choosing a quality box. It can be secured by a key lock (two keys supplied) and is UL certified to protect your valuables from fire for a minimum of 30 minutes. It also protects its contents from water submersion for up to 8 hours, and is supplied with an outstanding 5 year manufacturer’s warranty.

So who is this deed box made for? The answer is anyone that values peace of mind. You’ve read the evidence and understand what is at stake. Buy your deed box right now and take advantage of our free next day delivery service. From the moment you close the lid after placing your most cherished possessions inside, you will be able to enjoy the peace of mind that a quality deed box can provide.

For further information regarding this product, please visit our website or e-mail our friendly customer service team via support@safelincs.co.uk. You can also ring us on 0800 612 6537

Emergency Lighting – A Guide

Emergency Light - A GuideSafelincs operates a fire safety forum where people’s fire safety questions are answered by professionals. One of the frequently raised topics has been Emergency Lighting. To give you a broader understanding of emergency lighting, this blog compiles the typical queries and answers raised through the forum.

What is emergency lighting?

Emergency lighting is lighting that comes on when there is a mains power failure. Emergency lights are powered by rechargeable backup batteries which are either located inside the emergency light or in a central battery location with connections running to each emergency light. Emergency lighting is a general term and is sub-divided into emergency escape lighting and standby lighting. Standby lighting is used to continue normal work during a powercut and, as it is not a legal requirement, is not covered in this guide.

What is emergency ESCAPE lighting?

Emergency escape lighting comes on automatically when the mains power fails and gives off sufficient illumination to enable occupants and visitors to evacuate the premises safely.

Emergency escape lighting itself is sub-divided again into

  • open area lighting (bulkheads and other emergency lights)
  • escape route lighting (typically illuminated fire exit signs with a running white man on a green background)
  • high risk task area lighting (to allow the shut down of dangerous processes)

Publicly accessible buildings as well as most businesses are required by law to provide emergency escape lighting.

What key types of emergency lights are there?

There are two key types of emergency lighting: maintained and non-maintained.

Maintained emergency lights stay on constantly at all times and stay lit for the minimum emergency duration (usually 3 hours) after a mains failure. Maintained emergency escape lights are used in places of assembly like theatres, cinemas, entertainment halls but also shopping centres and similar venues. They allow the public to familiarise themselves with emergency routes and have the advantage that any failure of the emergency lighting bulbs can be spotted immediately.

A non-maintained emergency light will only light up in the event of a mains power failure and will also stay lit for the minimum emergency duration required. Non-maintained emergency lights are likely to be found in offices, shops and factories.

 

Does all escape route lighting have to be illuminated?

If sufficient open area emergency lighting is in the vicinity of a fire exit, non-illuminated fire exit signs can be sufficient in locations of minor importance. Photo-luminescent  fire exit signs would be preferable in this case, although it has to be ensured that sufficient light is reaching the photo-luminescent sign to ensure it is ‘charged’ at all times.

Considerations

British Standard BS 5266-1: 2011 provides clear guidelines about the design and installation of emergency lighting. It should be remembered that the British Standards specify the best practice for standard situations, however, a higher standard may be required for a particular installation.

The actual degree of illumination should be closely related to the nature of both the premises and its occupants.

Special consideration should be given to homes for the elderly, hospitals, crowded areas such as pubs, discos and supermarkets and to whether or not the premises are residential.

Borrowed lighting may be suitable in small premises (eg small shops) where there is light coming into the building from a dependable outside source, e.g. street lamps and will adequately illuminate escape routes. Alternatively, single ‘stand-alone’ escape lighting units may be sufficient in small premises and these can sometimes be combined with exit or directional signs.

An emergency lighting system should be installed by an electrician who specialises in emergency lighting.
They would need to be conversant with BS 5266-1- 2011 Emergency lighting-Part 1: Code of practice for emergency lighting of premises.

The question of the requirement for emergency lights in schools is a bit of an anomaly.
As a school is only occupied during the hours of daylight, emergency lighting is not therefore required. However, should the school be used out of hours, in the hall for example, then emergency lighting should be installed in the hall and the exit routes from it. The ‘responsible person’ should have the final say on this and might want to consult the local fire officer.

Toilet facilities for use by disabled people and/or any multiple closet facilities without borrowed light should have emergency escape illumination from at least one luminaire. Organisations may have to provide emergency escape lighting in each cubicle if there is no borrowed light.

What are the rules for rented properties?

For residential properties landlords are deemed to be the ‘responsible person’ for all fire safety and emergency lighting.

Single occupancy houses and houses of multiple occupancy up to two storeys high only need conventional lighting, whereas three and four storeys may require emergency escape lighting if the escape route is complex and there is no effective borrowed light.

Bedsit houses of multiple occupation of one to four storeys (with individual cooking facilities within bedsits) require conventional lighting and emergency escape lighting if risk requires such or there is no effective borrowed light. Bedsit houses of multiple occupation of five or six storeys with individual cooking facilities within bedsits require conventional lighting and emergency escape lighting

Two, three or four storey houses converted to self-contained flats require conventional lighting and emergency escape lighting if the fire risk assessment requires it.

Five or six storey house converted to self-contained flats require conventional lighting and emergency escape lighting. Importantly, common escape routes should be well lit.
There are guidelines to help understand the provision required and landlords need to be aware of their responsibilities to carry out a fire risk assessment, and make sure their property has adequate and appropriate fire safety measures in place.

How do you maintain emergency lighting?

Emergency lights have to be tested regularly unless they are self-testing emergency lights.

Emergency lights with internal backup batteries display a small green LED that indicates that the internal battery is being charged. Older models may have a red light. However, you still have to check the function of the emergency light regularly, as the LED only confirms that the unit charges rather than that the battery will last the full period required or that the bulb is in working order. 

All emergency lighting systems must be tested monthly. The test is a short functional test in accordance with BS EN 50172:2004 / BS 5266-8:2004.
The period of simulated failure should be sufficient for the purpose of this test while minimising damage to the system components, e.g. lamps. During this period, all luminaires and signs shall be checked to ensure that they are present, clean and functioning correctly. Emergency lighting key switches are available and allow for the interruption of the power to the emergency lights without affecting the power supply to the normal lighting circuits.

A test for the full duration (usually three hours) of the emergency lights must be carried out once a year. The emergency lights must still be working at the end of this test. The result must be recorded and, if failures are detected, these must be remedied as soon as possible.
Any batteries that do not last three hours should be changed immediately.
Life expectancy will vary depending on the make of the battery – with some makes it is four years, some five years. When the life expectancy date expires the batteries should be changed. It is a good idea that when a battery is changed the date of installation is written on the battery for future reference. Safelincs supply spare batteries.

If the fitting has a fluorescent tube the life will depend on whether the unit is maintained or non-maintained. Safelincs recommends that lamps in maintained bulkheads are changed every six months. If a fluorescent lamp has blackened ends / starting to turn black the tube needs replacing.

The occupier/owner of the premises should appoint a competent person to supervise the testing of the system. This person shall be given sufficient authority to ensure the carrying out of any work necessary to maintain the system in correct operation. Competent can be defined as someone who has sufficient training and experience or knowledge and other qualities that allow them to maintain the system properly. The level of competence required will depend on the complexity of the situation and the particular help that is required.

From a practical point of view, a normal caretaker would be able to use a test key to remove power from emergency lights and ensure that the emergency lights stay on the required period. When it comes to repair of failing emergency lights it would most likely that an electrician would be needed unless the caretaker has sufficient qualifications to replace batteries and lamps.

It is important, though, that all tests are recorded in the fire safety log book.

The longevity of emergency lights is better if lamps are changed before they are fully failing. However, this recommendation probably only applies if an organisation has a contractor for the maintenance of emergency lighting and the costs of a call-out were to be substantial. In such a case pre-emptive maintenance (changing while the light is still working) makes sense.

In the long run LED light are more economical than fluorescent tubes as they save electricity not only when the light is on but even during the trickle charging of the batteries. However, the real saving from LED emergency lights comes from not having to replace the tubes on a half yearly or yearly basis. The LEDs will last a lot longer, hence saving costs for maintenance call-outs and replacement tubes.

Many systems will have fish tail key switches in the power supply leading to suitable groups of emergency lights so that you don’t have to switch off the power at fuse level when you want to check them. If you have a system that can only be tested by switching the lighting power supply off altogether you would only be able to do your tests when the building is empty and if you have suitable portable light or suitable daylight in all locations you are checking. If you have dangerous processes in your company lighting might have to be on all the time, so that a central switch-off would be inappropriate.

 

Extinguisher run over by van – still pressurised!

We were always convinced that our P50 service free extinguishers made from a Kevlar-type aramid were almost in-destructable. Nevertheless, when one of our engineers was visiting one of our customers, a refinery on the east coast, he was surprised when he was handed a fire extinguisher that had been run over by a van and that it was still fully pressurised!

crushed-p50-1crushed-p50-2crushed-p50-3

This is not that surprising when you know that 1 in 500 of these extinguishers are tested by pressurising them 12,000 times from zero bar to 25 bar. And after they have undergone this harsh test, they are crushed flat by a steel blade before being re-inflated without being allowed to leak at 55 bar!

The P50 service free extinguisher is suitable for the harshest of environments, including outdoors.

BS 5839-1 fire alarm system standard explained

fire-alarm-panel-kitsBS 5839 Part 1 ‘Fire detection and fire alarm systems for buildings. Code of practice for design, installation, commissioning and maintenance of systems in non-domestic premises‘  is the key Standard for commercial fire alarm systems with central control panels. It helps customers and installers to specify, design, install and maintain fire alarm systems.

It is a substantial document and to help our customers find their way through it we have created a summary of the Standard. The summary covers:

  • Why might I need a fire detection / fire alarm system for my premises?
  • What are fire detection and fire alarm systems?
  • What is meant by ‘category of system’?
  • What are the main design considerations for an appropriate fire detection / fire alarm system?
  • What are the main installation issues?
  • What happens once the installation is complete?
  • Commissioning, documentation, and certification
  • Maintaining the system: what is involved?
  • User’s responsibilities and premises management: who does what?

Safelincs, the UK’s most progressive and customer friendly fire safety company offers its customers nationwide maintenance of fire alarm systems as well as a range of fire alarm system components:

For quotations for a new fire alarm system, please ring our friendly customer care team on 0800 612 6537.

To arrange your fire alarm system maintenance visit, please ring 0800 612 4827.

What To Do If Your Clothing Catches Fire

According to statistics published by the East Sussex Fire and Rescue Service in 2012, around 80 people die each year in in the UK after their clothing catches fire.

If your own clothing catches fire you should take the following course of action:

  • STAY where you are—moving or running feeds air to the flames and worsens the fire.
  • DROP to the floor—if you stand up, the fire can burn your face. Fold your arms high on your chest to protect your face.
  • ROLL slowly on the floor or ground, in a rug or blanket if you can.
  • COOL off as soon as possible with water for first and second degree burns. *

If you are in the position of helping somebody else whose clothing has caught fire you should apply the steps above. In addition there is one type of fire extinguisher that can be recommended for such a situation. See the video.

The Jewel E-Series Water Mist Fire Extinguisher is a new type of extinguisher, which works by dispersing microscopic ‘dry’ water mist particles to suppress fires and extinguish burning materials, The speed at which it takes effect, combined with the rapid cooling it induces, make it the perfect extinguisher to have to hand should a fire of this nature break out.

Jewel E-Series Water Mist Fire Extinguishers are the first broad-spectrum fire extinguishers. They can be used on almost every common fire including deep fat fryer fires. They are perfect for kitchens, as they contain no harmful substances and leave no residues. The extinguisher’s supersonic nozzle disperses microscopic ‘dry’ water mist particles to suppress fires and extinguish burning materials. The 35kV dielectrical test ensures that the extinguishers can be safely used near electrical equipment.

*In a serious fire room temperatures in a fire can be 100 degrees at floor level and rise to 600 degrees at eye level. This heat can melt clothes to a victim’s skin. Never peel the clothing off – leave the treatment to medical professionals.

Warning about pre-commissioned fire extinguishers

We occasionally get asked by our customers, if we could pre-service, or pre-commission our fire extinguishers for them prior to shipping. This practice, explicitly forbidden for all registered fire safety companies, involves a visual inspection and then labeling of an extinguisher with a signed off service label at the RETAILER’S warehouse. While this sounds like a clever practice, it is a service we would never offer to our customers. Apart from the fact that the British Standard BS5306-3:2009 specifically requests on-site commissioning to be completed AFTER all transport involved, the practice of pre-commissioning puts the customer both at the risk of injury and exposes them to substantial legal liabilities.

The main risk to the functioning of a fire extinguisher, and the reason for the requirement for extinguishers to be commissioned on site is damage during transport.

pre-delivery-inspection

Handles can get bent with the biggest risk being the safety pin being bent to a degree where it cannot be removed in an emergency. The latter event happens when cheap fire extinguishers rest on their heads in transit. Be careful when purchasing extinguishers online from less professional suppliers, as they often use mild steel pins that bend easily. Safelincs’ fire extinguishers, on the other hand, are 100% protected in transit by special head protectors or the use of stainless steel pins with extended diameters so that the pins can never bend in transit.

Another transport risk is leakage of CO2 fire extinguishers in transit. CO2 fire extinguishers do not have pressure valves and only a careful weight test during commissioning (removing the horn and measuring with precision scales) will reveal any loss in pressure and weight.

The other strong rationale for proper on-site commissioning is that customers require a certificate by an engineer to state that their premises are covered in accordance to the British Standard. A sticker on the extinguisher does not certify that the extinguisher is installed in the correct position or that it is in fact the right extinguisher for the risks present at the location.

All of this means that by taking a shortcut buying pre-commissioned extinguishers you are putting yourself at risk of liability if a faulty extinguisher is the cause of a failed attempt to put out a fire, resulting in loss of property and possibly injury or death. An insurance company might not pay out for damages, if the extinguishers on site were not correctly commissioned.

Safelincs has long been addressing this issue and offers all its extinguishers with an optional ON-SITE commissioning or installation/commissioning service. Our BAFE certified engineers will visit you and commission or install and commission the extinguishers at your premises. If the commissioning and installation option is chosen, our engineer will survey your site to make sure you have the correct extinguisher provision, fit the extinguishers brackets in the correct location, certify the extinguishers and label and sign each extinguisher. You are then fully covered for all eventualities.

Long-term effects of CO poisoning

One of the speakers at the launch of Carbon Monoxide Awareness Week at the House of Lords in November 2012 was Dr Steven White. He gave a very interesting presentation on the long-term effects of carbon monoxide poisoning, some of which are only recently being fully realised.

Dr White has co-written a factsheet that is published on the website of Headway, the charity that works to improve life after brain injury. With Headway’s permission we reproduce a short extract here.

Like other types of anoxic brain injury, acute CO poisoning may lead to quite severe long-term neurological problems, with disturbances in memory, language, cognition, mood and behaviour. The damage to the basal ganglia, which is a particular feature of CO poisoning, may lead to a movement disorder resembling Parkinson’s disease.

An unusual feature of acute CO poisoning is the delayed deterioration in neurological condition which may be seen in some cases, occurring anything from a few days to as long as five to six weeks after the initial exposure. The reason for this is not entirely clear, but changes in the white matter of the brain seem to be involved. It has been suggested that these may result from demyelination, in which there is loss of the fatty, insulating myelin sheath of the nerve axons, therefore impairing their ability to conduct electrical nerve impulses.

Chronic CO exposure

Chronic (persistent and long-term) exposure to lower levels of CO, as can occur with faulty domestic boilers, may go unrecognised. The symptoms include milder versions of those seen in acute CO poisoning, with headache, nausea, dizziness, light-headedness, fatigue and sleepiness, difficulty concentrating and memory problems, as well as changes in mood.

People may be aware that something is wrong, but be unable to identify exactly what is the matter, or may attribute the problems to overwork, stress or depression. If symptoms disappear while away at work, reappearing on returning home, or if other people in the same premises develop similar symptoms, it may become more obvious that there is an environmental cause.

Although most people seem to recover following chronic low level CO exposure when the source is removed, it can also lead to anoxic brain injury. There have been some documented cases of subtle Magnetic Resonance Imaging (MRI) abnormalities and long-term neuropsychological effects.

Treatment of CO poisoning

Treatment of acute exposure to CO involves immediate removal from the source of the poisoning and administration of 100% oxygen, together with general supportive medical care.

Hyperbaric oxygen therapy is sometimes advocated for severe cases of CO poisoning and involves giving pure oxygen at increased pressures in a hyperbaric chamber. It has been suggested that this may improve the long-term neurological outcome, although it remains controversial. Hyperbaric oxygen therapy is a specialised technique, which is only available in a few centres. It may also be associated with complications of its own and it is not used routinely.

To read the full factsheet go here

More information about carbon monoxide poisoning and detection can be found on our websites.

Extending Ei140 + Ei160 series smoke alarm groups

Many homes and small businesses are equipped with mains powered smoke alarms to BS5839 part 6 Grade D. These alarms are usually linked with cable and have to be installed by electricians. When increasing the number of smoke and heat alarms at a later date, it is costly and disruptive to run extra cable to the additional alarms, decorations are damaged and dust is created.

With the Aico Ei140 series (Ei141, Ei144, Ei146) and the Aico Ei160 series (Ei161, Ei164, Ei166), adding more smoke alarms to the group of alarms can be very simple using radio-interlinking.

Just one existing smoke alarm is taken off the ceiling and its existing base plate replaced with the RF base plate Ei168. This exchange, while very swift and simple, should be carried out by an electrician. The old alarm then simply slots onto the newly fitted base plate. Now you can install any of the radio-interlinked smoke alarm ranges from AICO/Ei in the additional rooms you wish to protect. The new radio-linked alarms will then communicate fully with the old system. This means that if any of the smoke alarms goes off (old or new alarms), the rest of the alarms will sound an alarm as well.

You have three choices to achieve this extension with radio-interlinked smoke alarms:

1) Install more mains powered alarms together with RF base plates. Their electrical power supply can be drawn from the nearest light fitting. This solution will require an electrician for all the work. However, this is a solution that will guarantee the Grade D rating of your installation. There is obviously no cabling required between the units, as the radio signal will communicate between the new alarms and, through the single converted old smoke alarm, with the old system. There are additional add-ons you can include in this system, such as RF manual break points and handheld controls for testing and, in the case of the Ei160 series, even for silencing and to locate the source of an alarm.

List of Alarms and add-ons available:

Series installed already Mains powered RF Smoke alarms available Manual break points available (optional). Wireless and 10 year battery Handheld controls available (optional)
Ei140 Ei407 Ei410TRF handheld test fob (tests interconnection, only)
Ei160 Ei407
  • Ei410 handheld test, hush and locator
  • Ei411H wall mounted test, hush and locator

2) If you want to save the cost for the electrician and want to speed up the installation process, you can install battery operated radio-interlinked alarms. One of the radio-interlinked families is the Ei600 series, which comes with a sealed-in ten year power supply. This system is usually accepted as a Grade D system, even though formally, as it does not contain mains power, it is not classified as a grade D system. If you have to satisfy a Building Inspector or the fire service, it makes therefore good sense to get their agreement before installing the system.

List of battery operated alarms and add-ons available:

Series installed already Battery operated RF smoke alarms Manual break points available (optional). Wireless and 10 year battery Handheld control (optional)
Ei140 Ei407 Ei410TRF handheld test fob (tests interconnection, only)
Ei160 Ei407
  • Ei410 handheld test, hush and locator
  • Ei411H wall mounted test, hush and locator

3) If you are not required to install in accordance to BS5839 Part 6 Grade D (eg older houses built prior to introduction of Building Regulations), you can also use radio-interlinked smoke alarms with alkaline backup batteries which must be replaced every year or two. This is of course the cheapest way of expanding your existing smoke alarm system. Again, all alarms will go off together, both the new as well as the old alarms.

List of radio-interlinked, battery operated alarms and add-ons available:

Series installed already Battery operated RF smoke alarms Manual break points available (optional). Wireless and 10 year battery Handheld control (optional)
Ei140 Ei407 Ei410TRF handheld test fob (tests interconnection, only)
Ei160 Ei407 Ei410TRF handheld test fob (tests interconnection, only)

What power consumption do emergency lights have?

When comparing power consumption of emergency lighting, and more specifically comparing LED lighting with standard lighting, it is important to understand some of the terms used and what they actually mean in this context. Sometimes you will see the power consumption documented in W (Watts) and sometimes it will be stated in VA (VoltAmperes). Whilst this looks confusing, it is comforting that both terms are actually identical. Multiplying the Voltage (V) of the electrical supply with the Amperage (A), which represents the current flowing through the light, gives you VA (VoltAmperes) which represents power consumption and is actually the same as the ‘Wattage’ (W). So VA equals W; they are just different ways of saying the same thing.

For this blog we will be comparing a CS8 maintained emergency bulkhead with an X-GSA LED maintained emergency bulkhead as they are very similar units, although they have a very different power consumption (also the CS8 produces light output of  100 lumens, whilst the X-GSA produces a slightly lower 85 lumens. This difference, though, is negligible.).

The CS8 contains an 8W T5 lamp which, as the name suggests, consumes 8 Watts. The ballast (the electronics that run the unit and the trickle charge for the backup battery) consumes 12 Watts, which means the CS8 in maintained mode consumes 20W.

The X-GSA contains 12 white LEDs which together consume 0.9W. The ballast consumes 2.6W, which means the whole unit in maintained mode consumes 3.5W.
That is a difference of 16.5W, which is huge when you consider that maintained lights are lit constantly. So, a CS8 in its maintained mode is consuming over 5 times more energy every hour than the X-GSA!

It is also important to know that LED emergency lights last substantially longer than fluorescent tubes. An LED bulb will last over 5 times longer than a traditional fluorescent light.

Generally speaking LED emergency lighting is more expensive than the traditional equivalent, but when you factor in the substantially lower power consumption and the lower maintenance needs of LED lights, they are actually more cost effective in the long term.