BS 5839-1 fire alarm system standard explained

fire-alarm-panel-kitsBS 5839 Part 1 ‘Fire detection and fire alarm systems for buildings. Code of practice for design, installation, commissioning and maintenance of systems in non-domestic premises‘  is the key Standard for commercial fire alarm systems with central control panels. It helps customers and installers to specify, design, install and maintain fire alarm systems.

It is a substantial document and to help our customers find their way through it we have created a summary of the Standard. The summary covers:

  • Why might I need a fire detection / fire alarm system for my premises?
  • What are fire detection and fire alarm systems?
  • What is meant by ‘category of system’?
  • What are the main design considerations for an appropriate fire detection / fire alarm system?
  • What are the main installation issues?
  • What happens once the installation is complete?
  • Commissioning, documentation, and certification
  • Maintaining the system: what is involved?
  • User’s responsibilities and premises management: who does what?

Safelincs, the UK’s most progressive and customer friendly fire safety company offers its customers nationwide maintenance of fire alarm systems as well as a range of fire alarm system components:

For quotations for a new fire alarm system, please ring our friendly customer care team on 0800 612 6537.

To arrange your fire alarm system maintenance visit, please ring 0800 612 4827.

P50 Popular at FM Show at NEC

The P50 service free extinguisher turned more than a few heads on the Safelincs stand at the recent Facilities Show at the National Exhibition Centre in Birmingham.

Facilities managers who attend the annual event are always looking for innovative ways to cut costs and provide better service for their clients. They didn’t take much persuading to see the benefits and potential savings offered by the P50.

P50-at-the-FM-trade-show

Traditional extinguishers require servicing each year but P50s are constructed using a composite material that will not rust or corrode. This protects the contents and no discharge testing or refills are required for ten years. The expensive annual service by an external engineer is no longer necessary– just a straightforward yearly test that can easily be carried out by an organisation’s in-house staff.

After ten years the P50s can be refilled and used for a further ten years.

Safelincs’ managing director, Harry Dewick-Eisele was at the show and had the opportunity to speak to many facilities managers. “Those with responsibility for large estates could see savings running into thousands of pounds,” he said. “A good number were going back to their offices to weigh up how quickly they could replace their existing appliances and start cutting costs.”

What To Do If Your Clothing Catches Fire

According to statistics published by the East Sussex Fire and Rescue Service in 2012, around 80 people die each year in in the UK after their clothing catches fire.

If your own clothing catches fire you should take the following course of action:

  • STAY where you are—moving or running feeds air to the flames and worsens the fire.
  • DROP to the floor—if you stand up, the fire can burn your face. Fold your arms high on your chest to protect your face.
  • ROLL slowly on the floor or ground, in a rug or blanket if you can.
  • COOL off as soon as possible with water for first and second degree burns. *

If you are in the position of helping somebody else whose clothing has caught fire you should apply the steps above. In addition there is one type of fire extinguisher that can be recommended for such a situation. See the video.

The Jewel E-Series Water Mist Fire Extinguisher is a new type of extinguisher, which works by dispersing microscopic ‘dry’ water mist particles to suppress fires and extinguish burning materials, The speed at which it takes effect, combined with the rapid cooling it induces, make it the perfect extinguisher to have to hand should a fire of this nature break out.

Jewel E-Series Water Mist Fire Extinguishers are the first broad-spectrum fire extinguishers. They can be used on almost every common fire including deep fat fryer fires. They are perfect for kitchens, as they contain no harmful substances and leave no residues. The extinguisher’s supersonic nozzle disperses microscopic ‘dry’ water mist particles to suppress fires and extinguish burning materials. The 35kV dielectrical test ensures that the extinguishers can be safely used near electrical equipment.

*In a serious fire room temperatures in a fire can be 100 degrees at floor level and rise to 600 degrees at eye level. This heat can melt clothes to a victim’s skin. Never peel the clothing off – leave the treatment to medical professionals.

Long-term effects of CO poisoning

One of the speakers at the launch of Carbon Monoxide Awareness Week at the House of Lords in November 2012 was Dr Steven White. He gave a very interesting presentation on the long-term effects of carbon monoxide poisoning, some of which are only recently being fully realised.

Dr White has co-written a factsheet that is published on the website of Headway, the charity that works to improve life after brain injury. With Headway’s permission we reproduce a short extract here.

Like other types of anoxic brain injury, acute CO poisoning may lead to quite severe long-term neurological problems, with disturbances in memory, language, cognition, mood and behaviour. The damage to the basal ganglia, which is a particular feature of CO poisoning, may lead to a movement disorder resembling Parkinson’s disease.

An unusual feature of acute CO poisoning is the delayed deterioration in neurological condition which may be seen in some cases, occurring anything from a few days to as long as five to six weeks after the initial exposure. The reason for this is not entirely clear, but changes in the white matter of the brain seem to be involved. It has been suggested that these may result from demyelination, in which there is loss of the fatty, insulating myelin sheath of the nerve axons, therefore impairing their ability to conduct electrical nerve impulses.

Chronic CO exposure

Chronic (persistent and long-term) exposure to lower levels of CO, as can occur with faulty domestic boilers, may go unrecognised. The symptoms include milder versions of those seen in acute CO poisoning, with headache, nausea, dizziness, light-headedness, fatigue and sleepiness, difficulty concentrating and memory problems, as well as changes in mood.

People may be aware that something is wrong, but be unable to identify exactly what is the matter, or may attribute the problems to overwork, stress or depression. If symptoms disappear while away at work, reappearing on returning home, or if other people in the same premises develop similar symptoms, it may become more obvious that there is an environmental cause.

Although most people seem to recover following chronic low level CO exposure when the source is removed, it can also lead to anoxic brain injury. There have been some documented cases of subtle Magnetic Resonance Imaging (MRI) abnormalities and long-term neuropsychological effects.

Treatment of CO poisoning

Treatment of acute exposure to CO involves immediate removal from the source of the poisoning and administration of 100% oxygen, together with general supportive medical care.

Hyperbaric oxygen therapy is sometimes advocated for severe cases of CO poisoning and involves giving pure oxygen at increased pressures in a hyperbaric chamber. It has been suggested that this may improve the long-term neurological outcome, although it remains controversial. Hyperbaric oxygen therapy is a specialised technique, which is only available in a few centres. It may also be associated with complications of its own and it is not used routinely.

To read the full factsheet go here

More information about carbon monoxide poisoning and detection can be found on our websites.

Extending Ei140 + Ei160 series smoke alarm groups

Many homes and small businesses are equipped with mains powered smoke alarms to BS5839 part 6 Grade D. These alarms are usually linked with cable and have to be installed by electricians. When increasing the number of smoke and heat alarms at a later date, it is costly and disruptive to run extra cable to the additional alarms, decorations are damaged and dust is created.

With the Aico Ei140 series (Ei141, Ei144, Ei146) and the Aico Ei160 series (Ei161, Ei164, Ei166), adding more smoke alarms to the group of alarms can be very simple using radio-interlinking.

Just one existing smoke alarm is taken off the ceiling and its existing base plate replaced with the RF base plate Ei168. This exchange, while very swift and simple, should be carried out by an electrician. The old alarm then simply slots onto the newly fitted base plate. Now you can install any of the radio-interlinked smoke alarm ranges from AICO/Ei in the additional rooms you wish to protect. The new radio-linked alarms will then communicate fully with the old system. This means that if any of the smoke alarms goes off (old or new alarms), the rest of the alarms will sound an alarm as well.

You have three choices to achieve this extension with radio-interlinked smoke alarms:

1) Install more mains powered alarms together with RF base plates. Their electrical power supply can be drawn from the nearest light fitting. This solution will require an electrician for all the work. However, this is a solution that will guarantee the Grade D rating of your installation. There is obviously no cabling required between the units, as the radio signal will communicate between the new alarms and, through the single converted old smoke alarm, with the old system. There are additional add-ons you can include in this system, such as RF manual break points and handheld controls for testing and, in the case of the Ei160 series, even for silencing and to locate the source of an alarm.

List of Alarms and add-ons available:

Series installed already Mains powered RF Smoke alarms available Manual break points available (optional). Wireless and 10 year battery Handheld controls available (optional)
Ei140 Ei407 Ei410TRF handheld test fob (tests interconnection, only)
Ei160 Ei407
  • Ei410 handheld test, hush and locator
  • Ei411H wall mounted test, hush and locator

2) If you want to save the cost for the electrician and want to speed up the installation process, you can install battery operated radio-interlinked alarms. One of the radio-interlinked families is the Ei600 series, which comes with a sealed-in ten year power supply. This system is usually accepted as a Grade D system, even though formally, as it does not contain mains power, it is not classified as a grade D system. If you have to satisfy a Building Inspector or the fire service, it makes therefore good sense to get their agreement before installing the system.

List of battery operated alarms and add-ons available:

Series installed already Battery operated RF smoke alarms Manual break points available (optional). Wireless and 10 year battery Handheld control (optional)
Ei140 Ei407 Ei410TRF handheld test fob (tests interconnection, only)
Ei160 Ei407
  • Ei410 handheld test, hush and locator
  • Ei411H wall mounted test, hush and locator

3) If you are not required to install in accordance to BS5839 Part 6 Grade D (eg older houses built prior to introduction of Building Regulations), you can also use radio-interlinked smoke alarms with alkaline backup batteries which must be replaced every year or two. This is of course the cheapest way of expanding your existing smoke alarm system. Again, all alarms will go off together, both the new as well as the old alarms.

List of radio-interlinked, battery operated alarms and add-ons available:

Series installed already Battery operated RF smoke alarms Manual break points available (optional). Wireless and 10 year battery Handheld control (optional)
Ei140 Ei407 Ei410TRF handheld test fob (tests interconnection, only)
Ei160 Ei407 Ei410TRF handheld test fob (tests interconnection, only)

What power consumption do emergency lights have?

When comparing power consumption of emergency lighting, and more specifically comparing LED lighting with standard lighting, it is important to understand some of the terms used and what they actually mean in this context. Sometimes you will see the power consumption documented in W (Watts) and sometimes it will be stated in VA (VoltAmperes). Whilst this looks confusing, it is comforting that both terms are actually identical. Multiplying the Voltage (V) of the electrical supply with the Amperage (A), which represents the current flowing through the light, gives you VA (VoltAmperes) which represents power consumption and is actually the same as the ‘Wattage’ (W). So VA equals W; they are just different ways of saying the same thing.

For this blog we will be comparing a CS8 maintained emergency bulkhead with an X-GSA LED maintained emergency bulkhead as they are very similar units, although they have a very different power consumption (also the CS8 produces light output of  100 lumens, whilst the X-GSA produces a slightly lower 85 lumens. This difference, though, is negligible.).

The CS8 contains an 8W T5 lamp which, as the name suggests, consumes 8 Watts. The ballast (the electronics that run the unit and the trickle charge for the backup battery) consumes 12 Watts, which means the CS8 in maintained mode consumes 20W.

The X-GSA contains 12 white LEDs which together consume 0.9W. The ballast consumes 2.6W, which means the whole unit in maintained mode consumes 3.5W.
That is a difference of 16.5W, which is huge when you consider that maintained lights are lit constantly. So, a CS8 in its maintained mode is consuming over 5 times more energy every hour than the X-GSA!

It is also important to know that LED emergency lights last substantially longer than fluorescent tubes. An LED bulb will last over 5 times longer than a traditional fluorescent light.

Generally speaking LED emergency lighting is more expensive than the traditional equivalent, but when you factor in the substantially lower power consumption and the lower maintenance needs of LED lights, they are actually more cost effective in the long term.

Replacement of old Kidde smoke alarms

As well as testing your smoke and heat alarms on a regular basis, it is important to make a note of when the units actually need to be replaced. Studies have shown that the functionality of smoke and heat alarms can start to deteriorate when they reach a lifespan of 10 years. Each smoke and heat alarm should have a “replace by date” visible on the outside of the unit and we recommend that you adhere to this guideline.

When replacing a smoke alarm it can be quite difficult to recognise a suitable replacement product. In some cases, you may find that the current alarm model has been discontinued. With battery operated alarms, as there is no wiring in place, it is much easier to replace the unit for another smoke alarm with like-for-like features. Mains powered alarms are hard wired and are most likely interconnected during installation. It is because of this that finding replacement detectors can be difficult.

Working with Kidde Safety Europe, Safelincs are able to provide a list of mains powered discontinued Kidde smoke and heat alarms, along with their suitable product equivalents.

Discontinued Alarm Replacement Alarm
123/9HI KEKF10
123i KEKF10
123/9HILL KEKF10R
223/9HI KEKF20
223/9HILL KEKF20R
1275H KEKF10
323/9HI KEKF30
323/9HILL KEKF30R

The new alarms will interlink with other, still working units of the previously installed smoke alarms. This means that there is no need to replace all of the units within a system if only some of the installed detectors have reached the end of their recommended lifespan. All new mains powered smoke and heat alarms are provided with a mounting bracket and a wiring connector. It is important to note that you need to replace the existing mounting base and re-connect the wiring to fit the new units. With any mains powered alarms, all electrical work should be carried out by a qualified electrician.

Safelincs offer a smoke alarm reminder service which allows customers to be notified when their smoke and heat alarms are due to be replaced, when the batteries need to be changed and reminds customers to test their alarms on a regular basis. The service is completely free and customers can choose if they wish to be reminded by email, SMS text message or by Twitter.

New Evacuator Site Alarms

Recently Safelincs added several new site alarms to their range. These included the Evacuator Site Guard call point and push button alarms, the Evacuator Tough Guard and the newly released Evacuator Tough Guard Wireless.

All four of these alarms are designed for use in building and construction sites, temporary marquees, camp sites, markets etc. where installing a permanent fire alarm system would be impractical and unnecessarily costly.

The Evacuator Site Guard is ideal for less harsh environments, such as camp sites and markets, while the Evacuator Tough Guard is perfect for busy building and construction sites where it may encounter water, dirt, dust and debris. The Tough Guard features an IP56 rated weatherproof enclosure that copes with harsh weather conditions and the occasional knocks and bumps it may have to endure.

These battery powered alarms can be used as standalone units or linked using 2 core wire. Running interlink cables all over a busy construction site may not be safe or practical, and this is where the new Tough Guard Wireless comes in. The Tough Guard Wireless has all the strength, durability and weatherproof protection of the standard Tough Guard with the added benefit of completely wireless interconnection to other Tough Guard Wireless units. The amazing 18,000m wireless range, long life battery and extremely loud 118dB sounder make these alarms an essential piece of safety equipment for any situation.

Take a look at the new models in our site alarm product range.

Which type of smoke alarm should I use?

Smoke alarms are the most essential components in any fire safety strategy, whether in commercial or domestic properties.

There is a wide range of smoke alarm models available designed to suit various circumstances. It is therefore important to ensure that you purchase the correct model for your requirements, in order to ensure your smoke alarms operate as efficiently as possible.

Below is a summary of the various smoke alarm models featured on our website:

Optical smoke alarms are suitable for general use and are especially suitable for detecting smouldering fires caused for example by smouldering soft furnishings. They are also not too sensitive to false alarms from burnt toast, making them ideal in hallways (near kitchens), living rooms and bedrooms.

Ionisation smoke alarms are able to detect the change in the behaviour of the air in case of a fire. Fast flaming fires, such as burning waste paper baskets, are easily detected by ionisation smoke alarms and we recommend ionisation smoke alarms for use in offices or on landings. Please note that ionisation smoke alarms contain a small amount of radio-activity. If you wish to avoid this, choose optical smoke alarms instead.

Heat alarms are designed to detect the increase of temperature caused by a fire and do not cause false alarms. They are especially useful in dusty or smoky areas, such as kitchen and garages. They do, however, not cover very large areas, so cannot really be used for larger parts of a building.

Multi-sensor alarms combine the features of optical and heat alarms, resulting in rapid fire detection and a reduced risk of false alarms. They are suitable for living rooms, bedrooms, hallways and landings but should not be used in kitchens.

If you require further advice on which smoke alarm design is suitable for you, please don’t hesitate to contact us today. We also publish a guide on the different smoke alarm technologies.

For warehouse areas and industrial properties we offer more fire detection technologies and central alarm panle systems.

Why are Fire Door Closers Important?

In order for fire doors to function properly, they should remain closed when the door is not in use. As obvious as this sounds, in a busy office building it can be difficult to ensure that fire doors are being closed. Therefore automatic fire door closers are installed to ensure that, after a door is opened, it naturally returns to a closed position where it can offer the maximum fire safety.

Fire door closers are a legal requirement in most settings

How do fire doors closers work?

Door closers work by using the energy built-up when opening the door, to close it. Fire door closers have different closing strengths depending on the weight of the fire door. The closing strength is otherwise known as the EN power size. Smaller and lighter fire doors do not need as much strength in the fire door closer to shut the door. Many door closer models have an adjustable power size. The configuration of the door closers will also depend on the design of the door (inward/outward closing).

How do I check my door closer is working?

This fire door maintenance checker is a useful guide for checking all parts of your fire door to make sure they are compliant and operational. An unlatched or non-operational door closer will not shut the fire door if a fire breaks out. This could have disastrous consequences.

Which fire door closer do I need?

There are a number of different types of fire door closer available including closers that are even concealed within the doors themselves. Free-swing closers enable the doors to be held safely in an open position or to swing freely on the hinges. This can help to improve accessibility, particularly for anyone with mobility difficulties or in busy areas. In the case of a fire, the fire alarm will trigger these hold-open devices and allow the door closer to close the door.

If you are not sure which fire door closer you need, compare features and prices in this overview of fire door closers. Alternatively, contact our customer support team on 0800 612 6537.